

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

MODIFIER EFFECT ON EXTRACTION OF MERCURY WITH SODIUM DIETHYLDITHIOCARBAMATE IN SUPERCRITICAL CARBON DIOXIDE

Tao Wang^a; Jinfen Ma^a; Zongyao Shen^a

^a Department of Chemical Engineering, Tsinghua University, Beijing, P.R. China

Online publication date: 11 September 2001

To cite this Article Wang, Tao , Ma, Jinfen and Shen, Zongyao(2001) 'MODIFIER EFFECT ON EXTRACTION OF MERCURY WITH SODIUM DIETHYLDITHIOCARBAMATE IN SUPERCRITICAL CARBON DIOXIDE', *Separation Science and Technology*, 36: 14, 3267 – 3275

To link to this Article: DOI: 10.1081/SS-100107772

URL: <http://dx.doi.org/10.1081/SS-100107772>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

MODIFIER EFFECT ON EXTRACTION OF MERCURY WITH SODIUM DIETHYLDITHIOCARBAMATE IN SUPERCRITICAL CARBON DIOXIDE

Tao Wang,* Jinfen Ma, and Zongyao Shen

Department of Chemical Engineering, Tsinghua University,
Beijing 100084, P.R. China

ABSTRACT

The modifier effect on the extraction of mercury ion with sodium diethyldithiocarbamate dissolved in supercritical carbon dioxide was investigated. The extraction of the mercury ion spiked on filter paper was experimentally studied in a supercritical carbon dioxide extraction experimental installation. Several organic solvents were used as co-solvents to modify supercritical carbon dioxide. Water and HNO_3 aqueous solutions were used to modify the solid matrix to be extracted. The enhancement of the extraction efficiency of the mercury ion depends on the polarity and amount of co-solvent. The extraction efficiency was also enhanced by modifying the solid matrix with water or HNO_3 aqueous solution, and we found that the extraction depended on the concentration of HNO_3 in the modifier for the solid.

Key Words: Mercury; Extraction; Supercritical; Carbon dioxide; Modifier; Sodium diethyldithiocarbamate

*Corresponding author. Fax: +86 10 62770304; E-mail: taowang@tsinghua.edu.cn

INTRODUCTION

Supercritical carbon dioxide (scCO₂) extraction is a well-proven technology for many separation purposes. The extraction of metal ions through the use of supercritical carbon dioxide with coordinating ligands was recently explored (1). The use of supercritical carbon dioxide instead of organic solvents for the extraction of metals from liquid or solid matrices has several potential advantages. The residual contamination of the matrices by the organic solvent may be eliminated by substitution with scCO₂. Because of relative low viscosity and high solute diffusivity of scCO₂, the mass transfer characteristics of it are excellent compared to those of organic solvents, and the replacement of organic solvent by scCO₂ may enhance the rates of extraction and stripping. The selective extraction schemes and easy separation of the solute from the solvent may also be realized with the manipulation of the solvency characteristics of scCO₂ with small changes in temperature and pressure. CO₂ is cheap, nontoxic, and environmental benign. As a result of these favorable properties, the use of scCO₂ as a solvent for extraction of metals is gaining more interest among those in research and development (2–4).

The nonpolar nature of scCO₂ means that ligands and metal complexes have limited solubility in it. The addition of modifiers into scCO₂ can affect the solubility and enhance the extraction efficiency of it. Methanol has already been used to modify scCO₂ for the extraction of heavy metal ions by Wai and co-workers (5–7). We modified scCO₂ with several organic solvents. The effects of different modifiers on the extraction of mercury from solid samples with sodium diethyldithiocarbamate (NaDDC) in scCO₂ were investigated. The roles of water and HNO₃ aqueous solution in modifying the solid matrix to be extracted were also explored.

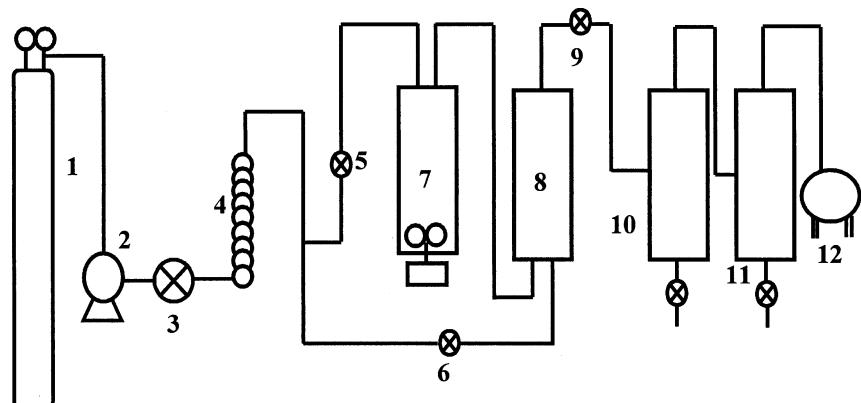
EXPERIMENTAL

Materials

NaDDC, Hg(NO₃)₂, nitric acid, dithizone, chloroform, methanol, toluene, dichloromethane, hexane, and acetic acid are all A.R. grade. They were all purchased from Beijing Chemicals Co (Beijing, China) and used without further purification. The filter paper (quantitative analysis grade with 0.1- μ m diameter pores) was obtained from Hangzhou Fuyang Special Paper Co (Hangzhou, China), and used as received. CO₂ of 99.9% (wt) purity was supplied by Beijing Analytical Instrument Co (Beijing, China). MOS grade water was obtained from the Institute of Microelectronic Technology in Tsinghua University (Beijing, China).

Preparation of Solid Samples

Solid samples were prepared by spiking a 5-g filter paper with 5-mL Hg (NO₃)₂ aqueous solution. The filter was subsequently dried in air at 40°C for 10 hours.


Analysis of Mercury Ion

The Hg²⁺ content in the solid samples before and after the extraction were determined by the following method: The Hg²⁺ in the solid sample was transferred into the nitrate acid solution by boiling the solution with the sample, then it was extracted with dithizone dissolved in chloroform, and the concentration of the formed orange Hg-dithizone complex in chloroform was analyzed by a spectrophotometric method at 490 nm (7,8). The detection limit of this analysis method is 5×10^{-6} g Hg²⁺/g dry solid. Because the Hg²⁺ concentration in this work ranged from 10^{-4} g Hg²⁺/g dry solid to 10^{-2} g Hg²⁺/g dry solid, the analysis is suitable for this work and can be realized with relatively simple and cheap instruments.

Extraction with NaDDC in scCO₂

All the extraction experiments were performed with the supercritical carbon dioxide extraction apparatus schematically shown in Fig. 1. Carbon dioxide from the CO₂ cylinder (no. 1) was compressed to high pressure by compressor (no. 2) and adjusted to the extraction pressure by the pressure regulator (no. 3). The high pressure CO₂ was heated to the extraction temperature by the preheater (no. 4). The solid samples, which were treated by adding a water or HNO₃ aqueous solution into it for the solid modification experiments, were put in the upper part of the 50-mL extractor (no. 8). For each experiment, a 5-g solid sample with a known initial Hg²⁺ concentration was extracted. NaDDC was in the lower part of the extractor for all experiments. The amount of NaDDC was always 500% the level of stoichiometric excess. The sample and the ligand were separated with inert quartz wool. The spare space in the extractor was also filled with quartz wool. The liquid modifier for CO₂ was put into the liquid extractor (no. 7) and dissolved by supercritical carbon dioxide. The metal ions on the spiked solid samples were extracted by supercritical carbon dioxide and in the process dissolved the NaDDC and modifiers. The formed metal complexes were precipitated in a 50-mL separator (no. 10) under reduced pressure. The flow rate of CO₂ was controlled by a valve located between the extractor and the separator, and was measured by a gas meter. After the dynamic extraction, the CO₂ supply was cut off and the pressure

Figure 1. The schematic of supercritical carbon dioxide extraction apparatus. (1) carbon dioxide gas cylinder, (2) compressor, (3) pressure regulator, (4) preheater, (5) switch valve, (6) switch valve, (7) liquid extractor, (8) solid extractor, (9) reduction valve, (10) primary separator, (11) secondary separator, and (12) wet gas flow gauge.

of the extraction system was lowered to ambient pressure. The extracted solid sample was taken out of the extractor and analyzed to determine the residual concentration of Hg^{2+} .

The extraction efficiency was calculated as

$$E = 1 - C_e/C_0 \quad (1)$$

where, E is the extraction efficiency; C_0 is the initial concentration of Hg^{2+} in a solid; and C_e is the concentration of Hg^{2+} in the solid after the extraction.

RESULTS AND DISCUSSION

Using the experimental setup and procedure described, we determined that the extraction efficiency of Hg was 85.09% at 45°C, 20 MPa, a CO_2 flow rate of 50 NL/min, an extraction time of 80 minutes, and an initial Hg^{2+} concentration of 3.5815×10^{-3} g/g. The amount of the solid sample was 5 g, and the amount of NaDDC was 500% excess and included 120 mL of the modifier methanol. Although the details of our experimental setup, the extraction procedure, and conditions are different than those of Wai et al. (7), the results are the same. In the work by Wai et al. (7), 87% of Hg^{2+} was recovered from 300-mg filter paper spiked by 50 mg NaDDC in methanol-modified sc CO_2 (5 μg) with

Table 1. Some Properties of Organic Modifiers

Modifier	Dipole Moment	Acidic/Basic/Neutral
Methanol	2.9	neutral ($pK_a = 16$)
Dichloromethane	1.6	neutral
Toluene	0.4	neutral
Hexane	0.0	neutral
Acetic acid	1.7	acidic ($pK_a = 4.8$)

a 15-minute static extraction followed by a 15-minute dynamic extraction at 60°C and 200 atm.

Effects of Modifiers Dissolved in scCO₂

Methanol, dichloromethane, hexane, toluene, and acetic acid were used as modifiers for CO₂. Select properties of the modifiers are listed in Table 1.

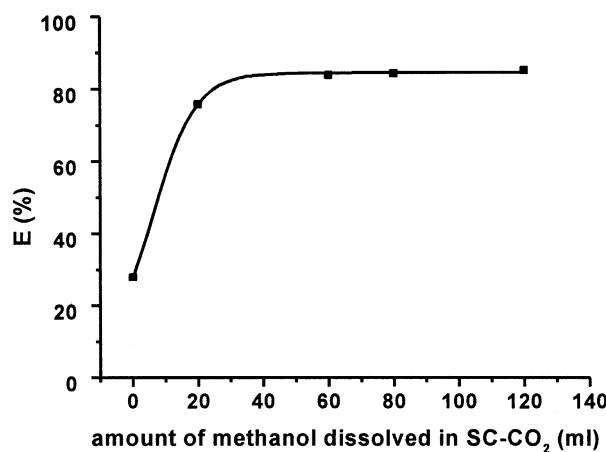
The effects of the different modifiers dissolved in supercritical carbon dioxide on the extraction of mercury ion were experimentally compared. Table 2 shows the results of the extraction of solid samples under the same initial concentration of Hg²⁺, 3.0607×10^{-3} g Hg/g dry solid; the same amount of NaDDC, 500% excess; the same amount of the solid sample, 5 g; and the same amount of the modifier, 150 mL, at the operation conditions, 20 MPa, 45°C, and 46.0 NL/min CO₂ flow rate.

According to Table 1, the modifiers are in the order: hexane < toluene < dichloromethane < acetic acid < methanol, as their dipole moments increase. Table 1 shows that methanol has lower acidity than does acetic acid.

Table 2. Effect of Different Modifiers on Extraction Efficiency

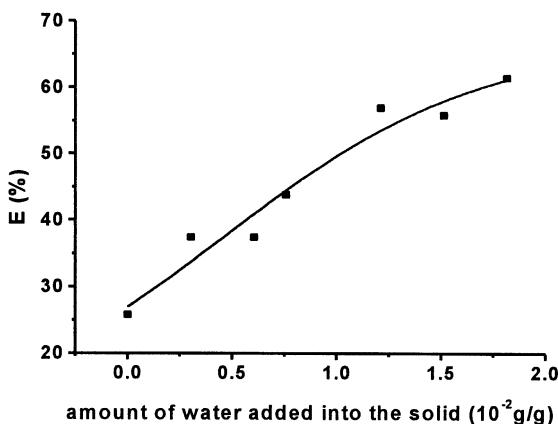
Modifier	Extraction Time (min)	Extraction Efficiency (%)
acetic acid	84	88.98
methanol	85	79.53
dichloromethane	86	77.95
toluene	87	66.93
hexane	90	62.20
None	90	62.35

$P = 20$ MPa; $T = 45^\circ\text{C}$; $F = 46$ NL/min; $C_0 = 3.0607 \times 10^{-3}$ g/g; 150 mL modifier; 5.0 g solid sample; NaDDC = 500% excess.



As shown in Table 2, the enhancement of the extraction efficiency with the modifiers is in the order hexane < toluene < dichloromethane < methanol < acetic acid. The modifier effect is heavily dependent on the polarity of the modifier. The polar modifiers, methanol, acetic acid, and dichloromethane, can obviously improve the extraction of Hg^{2+} with NaDDC in supercritical carbon dioxide. The enhancement of the extraction efficiency increases as the polarity of the modifier increases. The nonpolar modifier hexane had no effect on the extraction. Acetic acid was the best modifier for extraction because the acidic environment helps to free Hg from the solid matrix.

The amount of the modifier dissolved in supercritical carbon dioxide also affects the extraction of Hg^{2+} . Figure 2 shows the extraction efficiency of Hg^{2+} at 45°C, 20 MPa, CO_2 flow rate of 50 NL/min, extraction time of 80 minutes, initial Hg^{2+} concentration of 3.5815×10^{-3} g/g, a 5-g solid sample, a 500% excess amount of NaDDC, and different amounts of methanol. The extraction efficiency increases as the amount of methanol is increased.


Effect of the Modifier Added into the Solid Matrix

For modifying the solid matrix, water and HNO_3 aqueous solutions were added into the dry solid samples to be extracted. The effect of the amount of wa-

Figure 2. Effect of the amounts of methanol on the extraction efficiency of Hg^{2+} ($T = 45^\circ\text{C}$; $P = 20$ MPa; $F = 50$ NL/min; $t = 80$ minutes; $C_0 = 3.5815 \times 10^{-3}$ g/g; 5 g solid sample; NaDDC = 500% excess).

Figure 3. The effect of the amount of water added into the solid sample on the extraction of Hg^{2+} ($T = 40^\circ\text{C}$; $P = 17 \text{ MPa}$; $F = 28.0 \text{ NL/min}$; $t = 100 \text{ minutes}$; $C_0 = 5.190 \times 10^{-3} \text{ g/g}$; 5 g solid sample; NaDDC = 500% excess).

ter added into the solid sample on the extraction of Hg^{2+} is shown in Fig. 3. The extraction of Hg^{2+} increases as the amount of water added increases. The presence of water makes the solid matrix swell, and then supercritical carbon dioxide in which the NaDDC is dissolved can more easily reach the interior of the solid matrix. Therefore, adding water into the solid facilitates the chelation of Hg^{2+} with DDC and the transport of the formed complex $\text{Hg}(\text{DDC})_2$ from the solid into the fluid phase. Water may also block the active sites of the solid matrix and thus reduce the resorption of Hg^{2+} onto the active site of the solid or substitute Hg^{2+} on the coordinate sites of the solid matrix. Because of the presence of water, the acidic environment is generated when CO_2 is passed over the solid matrix. This increased acidity leads to the formation of carbonic acid and a pH of 3 during the extraction process. Hg in the solid matrix becomes free relatively easily in the resulting acidic environment. This ease of dissociation also facilitates the extraction.

The effect of the concentration of HNO_3 solution added into the solid matrix was studied. The results are listed in Table 3. The extraction efficiency of Hg^{2+} from the solid sample with NaDDC dissolved in scCO_2 became higher as increased amounts of concentrated HNO_3 solution added to the matrix. These results indicate that the acidic environment in the solid matrix is favorable to free the Hg from any acetate groups that may be bound to it on the cellulose acetate surface. They also show that the acidic environment helps the formation of the complex $\text{Hg}(\text{DDC})_2$ and thus facilitates the extraction of Hg^{2+} from the solid matrix into the supercritical carbon dioxide phase.

Table 3. The Effect of the Concentration of HNO_3 Solution Added into the Solid on the Extraction

Concentration of Solution Added into the Solid (mol/L HNO_3)	Extraction Efficiency (%)
0	35.01
0.001	39.39
0.01	42.67
0.1	45.46
1	53.17
5	53.83

$P = 20 \text{ MPa}$; $T = 45^\circ\text{C}$; $F = 46 \text{ NL/min}$; $C_0 = 3.0607 \times 10^{-3} \text{ g/g}$; 150 mL modifier; 5.0 g solid sample; NaDDC = 500% excess

CONCLUSIONS

The modifiers dissolved into supercritical carbon dioxide and the modifiers added into the solid matrix to be extracted play important roles for the extraction of mercury ion by supercritical carbon dioxide in which sodium diethyldithiocarbamate is dissolved. The polar modifiers dissolved in scCO_2 can improve the extraction of Hg^{2+} . The enhancement of the extraction efficiency depends on the polarity and acidity of the modifier dissolved into scCO_2 . Adding modifiers, water and HNO_3 solutions, into the solid matrix to be extracted can improve the extraction of Hg^{2+} for this system. The enhancement of the extraction efficiency is dependent on the concentration of HNO_3 solution and the amount of the modifier added.

NOMENCLATURE

C_0 initial concentration of Hg^{2+} in the solid sample to be extracted
 $(\text{g Hg}^{2+}/\text{g dry solid})$
 C_e concentration of Hg^{2+} in the solid sample after extraction
 $(\text{g Hg}^{2+}/\text{g dry solid})$
 C_m concentration of the modifier added into the solid sample to be extracted
 (g/g dry solid)
 E extraction efficiency defined as Eq. (1) (%)
 F flow rate of carbon dioxide (NL/min)
 P pressure (MPa)
 T temperature ($^\circ\text{C}$)
 t extraction time (minutes)

REFERENCES

1. Laintz, K.E.; Hale, C.D.; Stark, P.; Rouquette, C.L.; Wilkinson, J. A Comparison of Liquid and Supercritical Carbon Dioxide as an Extraction Solvent for Plating Bath Treatment. *Anal. Chem.* **1998**, *70* (2), 400–406.
2. Yazdi, A.V.; Beckman, E.J. Design, Synthesis, and Evaluation of Novel, Highly CO₂-Soluble Chelating Agents for Removal of Metals. *Ind. Eng. Chem. Res.* **1996**, *35* (10), 3644–3652.
3. Erkey, C. Supercritical Carbon Dioxide Extraction of Metals from Aqueous Solutions: a Review. *J. Supercritical Fluids* **2000**, *17* (3), 259–287.
4. Darr, J.A. Ploiaikoff, M. New Directions in Inorganic and Metal-Organic Coordination Chemistry in Supercrit. Fluid. *Chem. Rev.* **1999**, *99* (2), 495–541.
5. Wang, S.F.; Wai, C.M. Supercritical Fluid Extraction of Bioaccumulated Mercury from Aquatic Plants. *Environ. Sci. Technol.* **1996**, *30* (10), 3111–3114.
6. Wai, C.M.; Lin, Y.H.; Brauer, R.D.; Wang, S.F.; Beckert, W.F. Supercritical Fluid Extraction of Organic and Inorganic Mercury from Solid Materials. *Talanta* **1993**, *40* (8), 1325–1330.
7. Wai, C.M.; Wang, S.F.; Liu, Y.; Lopez-Aila, V.; Beckert, W.F. Evaluation of Dithiocarbamates and β -Diketones as Chelating Agent in Supercritical Fluid Extraction of Cd, Pb, and Hg from Solid Samples. *Talanta* **1996**, *43* (10), 2083–2091.
8. Xian, Y.; Li, J.; Wang, G. *Handbook of Analytical Methods of Toxic Substances in Biologic Materials*. Ren Min Wei Sheng Press: Beijing, P.R. China, 1994; 123–127.

Received June 2000

Revised October 2000

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SS100107772>